

Needs Tailored Interoperable Railway Infrastructure

Track innovations and results (WP2)

NeTIRail-INFRA final conference, Ljubljana – 24th May 2018

Vlasta MIKLAVŽIN

WP2 - Introduction

- WP2 Summary
- WP2 Tasks Overview
- T2.1 Overview
- T2.2 Overview
- T2.3 Overview & Innovation
- T2.4 Overview & Innovation
- T2.5 Overview & Innovation
- T2.6 Overview & Innovation

WP2 - Summary

- Work package number: WP2
- Work package title: Tailored track infrastructure, design and maintenance
- Lead beneficiary: 12 SZ (SŽ-Infrastruktura d.o.o.)
- Partners (10): SZ, USFD, UIC, ADS-ELECTRONIC RESEARCH SRL, AFER, TU Delft, IFSTTAR, TCDD, INTADER, RCCF
- Start month: 1
- End month: 33

WP2 - Tasks Overview

Tasks	Deliverables
T2.1 Geospatial comparison of rail infrastructure cost and maintenance drivers for high and low density lines	D2.1
T2.2 Practices and track technology tailored to particular lines	D2.2
T2.3 Application of lean and automotive industry techniques to railway S&C T2.3.1 Data to support lean and automotive industry techniques in railway S&C T2.3.2 Application of lean and automotive industry techniques to railway S&C	D2.3 D2.4
T2.4 Life extension for plain line through preventing corrugation T2.4.1 Corrugation reduction strategies T2.4.2 Traffic dependent tailoring of plain line to preventing corrugation	D2.5 D2.6
T2.5 Tailoring lubrication to duty and climate T2.5.1 Lubrication systems and data T2.5.2 Tailoring lubrication to duty and climate	D2.7 D2.8
T2.6 Cost effective transition zone design T2.6.1 Transition zone model development T2.6.2 Predictive and cost effective transition zone design	D2.9 D2.10

T2.1 Overview

T2.1 Geospatial comparison of rail infrastructure cost and maintenance drivers for high and low density lines

Lead partner: ADS

• Partners: USFD, SZ, AFER, TCDD, UIC, RCCF

General Objectives:

 Application of <u>Geographic Information System</u> (GIS) <u>mapping</u> to the failure data to reveal correlations and underlying <u>drivers of cost and maintenance</u> which have not been previously visible

T2.2 Overview

T2.2 Practices and track technology tailored to particular lines

Lead partner: ADS

Partners: USFD, SZ, AFER, INTADER, UIC, RCCF

- Identifying the <u>best practices for installation</u>, <u>operation and maintenance</u> of lines in the NeTIRail-INFRA case study categories:
 - busy passenger
 - low density rural/secondary line
 - freight dominated route

T2.3 Overview

T2.3.2 Application of lean and automotive industry techniques to railway S&C

Lead partner: IFSTTAR

Partners: SZ, RCCF, TCDD, AFER, USFD, UIC, INTADER

- Apply lean and automotive industry techniques to railway S&C, to produce a step change in railway switch and crossing (S&C) life and costs
- Analyse and <u>optimize the maintenance process</u>, in particular <u>installation/replacement of S&C</u>

T2.3 Innovation

Innovation → LEAN

Lean improvement of S&C design, replacement and

maintenance.

T2.4 Overview

T2.4.2 Traffic dependent tailoring of plain line to preventing corrugation

Lead partner: TUD

• Partners: USFD, SZ, AFER, INTADER, TCDD

- Extend the life of plain line through better understanding of how <u>corrugations</u> (rail surface irregularity and waviness) can <u>be prevented</u>
- To <u>test various forms of pads and clips</u> in the testing ring track for evaluation of the line corrugation

T2.4 Innovation

Innovation → **CORRUGATION**

To control short pitch corrugation by the choice of railpad and fastening system.

T2.5 Overview

T2.5.2 Tailoring lubrication to duty and climate

Lead partner: INTADER

Partners: USFD, UIC, SZ

- Research and test <u>the rail-wheel lubrication and</u> <u>appropriateness</u> for <u>different</u> lines/traffic <u>density</u> of operations and weather conditions
- Identify which lubrication works best in different climate areas (some lab tests, some manufacturers data)

T2.5 Innovation

Innovation → LUBRICATION

Optimal lubrication techniques for different density of rail lines and weather conditions.

T2.6 Overview

T2.6.2 Predictive and cost effective transition zone design

• Lead partner: USFD

Partners: SZ, INTADER

- Develop a <u>novel track</u> vertical stiffness <u>transition zone design</u>; changes in vertical stiffness occur when the track moves on and off bridges and other structures or locations
- Transition zone modelling; look for modification stiffness without changing <u>sleeper</u> spacing but instead focus on dimension and mass

T2.6 Innovation

Innovation → **TRANSITION ZONES**

Cost effective transition zone design based on varying the slippers mass.

THANK YOU for your attention!

Prometni institut Ljubljana d.o.o. Kolodvorska 11, SI-1000 Ljubljana

Tel.: +38612914625, +38612914626

Fax.:+38612319277

vlasta.miklavzin@prometni-institut.si

www.prometni-institut.si

Needs Tailored Interoperable Railway Infrastructure

Track innovations and results (WP2)

NeTIRail-INFRA final conference, Ljubljana – 24th May 2018

Vlasta MIKLAVŽIN

